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Abstract
In this paper, we design an optimal control law to suppress decoherence effects
in Markovian open quantum systems. The optimal control law is subject to
the tracking precision of the trajectory governed by the free system, which is
ideally free from decoherence. We observe from numerical simulation that the
undesired decohering dynamics can be partially squeezed out in most systems.
Moreover, we observe the existence of sinusoidally oscillating resonant modes
that play dominant roles in the controlled trajectory, which can be easily realized
by continuous wave pulses. These key features are strictly demonstrated in
subsequent analysis under proper assumptions. For systems in which the
coherent control does not work, we suggest a feedback control strategy to
extend the applicability of control to wider class of systems.

PACS numbers: 03.67.Lx, 03.67.Pp

1. Introduction

In recent years, rapidly increasing research on quantum information technologies [1] has been
dedicated to theoretical and experimental applications to microscopic systems [2–7]. Among
various unsolved problems, decoherence is recognized as a bottleneck for its severe destruction
of quantum superposition that is the key to quantum information processing. Various schemes
have been proposed to reduce this unexpected effect. The quantum error-correction code
[8–12] and error-avoiding code [13–15] schemes are presented by encoding quantum states
onto the carefully selected subspaces that are isolated from the decoherence channels. Such
ideas evolve into the continuous error correction via feedback of the classical information
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extracted from continuous quantum measurement [16, 17]. In addition, Viola and Lloyd
proposed the fast switching bang–bang controls [18–21] borrowing ideas from refocusing
techniques.

It is convenient to employ optimal control technique in decoherence control, which has
been successfully applied to laser control of bond-selection chemical systems [22, 23]. Along
this line, several studies have been done to seek control solutions to reduce the decoherence
effects by minimizing a certain class of cost functionals [24–26]. In this paper, we shall
adopt the method of optimal trajectory tracking in order to force the system state to evolve
as ‘close’ as possible to the expected quantum process. The paper is organized as follows:
in section 2, we formulate the control problem in the representation of real coherent vector.
In section 3, we apply optimal tracking method to numerically simulate three fundamental
decoherence models in quantum computation. In section 4, we introduce the concept of
stationary solution and study the special case of sinusoidal stationary control laws that suffice
to be a good approximation to the optimal control laws. In section 5, feedback control strategy
is introduced to treat exceptional cases. The conclusion is presented in section 6.

2. Bloch vector model

In this paper, we consider the Markovian open quantum systems that are widely studied such
as in [27–29]. The mathematical model can be written as the following master equation [30]:

ρ̇ = −i[H0, ρ] − i
n∑

i=1

ui[Hi, ρ] +
m∑

j=1

�jD[Lj ]ρ, (1)

where the Planck constant h̄ has been assigned to be 1. The quantum state is represented
by the density matrix ρ. H0 refers to the free Hamiltonian and H1, . . . , Hn are the control
Hamiltonians adjusted by control parameters u1, . . . , un, respectively. The Lindblad terms
D[Lj ]ρ = LjρL

†
j − 1

2L
†
jLjρ − 1

2ρL
†
jLj , where j = 1, . . . , m, characterize the dissipative

channels via interactions of system operators Lj with the environment. The positive
coefficients �j represent the damping rates.

Note that the Markovian approximation adopted in (1) is not always satisfied such as in
[31–34], especially in solid-state systems [35]. The analysis of such non-Markovian systems
require the information of the evolution of an external reservoir, which in general has infinite
number of degrees of freedom. Hence, the corresponding control design becomes much more
complicated. Nevertheless, in some circumstances [31, 36], one can make use of the ‘system +
bath + environment’ model, in which the systems interact directly with a low-dimensional
intermediate bath, and the bath interacts weakly with the external environment. With this
model, the ‘system + bath’ part (‘dressed’ system) can be approximated to be Markovian,
while evolution of the system itself is non-Markovian. Some other possible approaches can
be seen with the help of the non-Markovian master equation [37].

Further, we assume that the quantum system in the absence of decoherence, namely

ρ̇ = −i[H0, ρ] − i
n∑

i=1

ui[Hi, ρ], (2)

is strongly controllable [30, 38], i.e. the system (2) can be steered starting from an arbitrary
pure state to any pure state at any positive time. In other words, one can drive the system
arbitrarily fast along trajectories governed by any prescribed Hamiltonian. This assumption
is particularly essential in the coherent control of open systems because the ability of guiding
coherent dynamics is required to be as strong as possible to resist decoherence. However, it
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should be noted that the assumption of strong controllability imposed on the closed system (2)
is not applicable to the open system (1). In fact, the strong controllability of the open system
(1), i.e. controlling the system as quickly as possible, relates to the small-time behaviour of the
system which may contradict the Markovian assumption describing the long-time behaviour
of the open system. This fact has been rigorously demonstrated by Altafini [30] by showing
that the open system is never strongly controllable.

In order to facilitate the calculations, we will convert the differential equation (1) from
the complex density matrix representation into the so-called coherent vector representation
[28, 30]. Firstly, we choose an orthonormal basis of N × N matrices {I,�j }j=1,...,N2−1 with
respect to the inner product 〈X, Y 〉 = tr(X†Y ), where I is the N-dimensional identity matrix
and �j are N × N Hermitian traceless matrices. With this basis, any N × N complex matrix
A can be expanded as

A = a0I +
∑

i

ai · �i.

In particular, the Hermitian density matrix ρ can be represented as ρ = 1
N

I +
∑

i mi · �i .
�m = (m1, . . . , mN2−1)

T is a real (N2 − 1)-dimensional vector which is called the coherent
vector corresponding to ρ. The system equation (1) can then be rewritten as a differential
equation of the coherent vector:

ṁ(t) = O0m(t) +
n∑

i=1

uiOim(t) − Dm(t) + g, (3)

where O0,Oi ∈ so(N2 − 1) are converted from the Hamiltonian parts [30] in (1). The
term ‘−Dm + g’ comes from the decohering process represented by the Lindblad terms. For
simplicity, one can always decompose the matrix D as D = D1 + D2, where D1 and D2

are, respectively, symmetrical and antisymmetrical matrices. The symmetrical part satisfies
D1 � 0. Obviously, the antisymmetrical part D2 that represents the unitary part of the Lindblad
terms can be absorbed into the Hamiltonian part of equation (1) under the assumption of strong
controllability of (2). One can rewrite O0 as O0 + D2, or alternatively remove D2 directly
from (3) because it can be dynamically cancelled by the strong control operations O1, . . . , On.
Hence, without loss of generality, we can always assume that D is symmetrical and non-
negative definite.

The above approach is a generalization of the well-known Bloch representation for two-
level systems. Physically, the norm of the coherent vector represents the amount of coherence
in the quantum state. For a pure state, the length of corresponding coherent vector is unity
and it should be shorter for a mixed state. The coherent control drives the quantum state along
a sphere on which coherence is conserved, while the decohering operators pull the vector
towards the origin. The inhomogeneous term g is related to the stable state of the system, e.g.
the ground state in spontaneous emission.

For the Markovian open quantum system (1), we assume in addition that the system
satisfies the so-called (O) conditions:

(i) [O0,D] = 0, (ii) O0g = 0.

The (O) conditions have important physical implications in that the equilibrium distribution
of the density matrix in the absence of controls ρ∞ = 1

N
I +

∑
i (m∞)i · �i commutes

with the internal system Hamiltonian H0 (see appendix A for proof). That is to say, in the
energy representation, the off-diagonal entries of the system density matrix, which embody
the coherence in the system, decay to zero as a result of decoherence.
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Under the (O) conditions, we will discuss the selection of control Hamiltonians. It is not
difficult to prove that there exists a matrix basis {I,�i} under which the matrices O0 and D
are simultaneously block-diagonal, i.e.

O0 = diag

((
0 −ω1

ω1 0

)
, . . . ,

(
0 −ωr

ωr 0

)
, 0, . . . , 0

)
,

(4)

D = diag

((
d1

d1

)
, . . . ,

(
dr

dr

)
, d2r+1, . . . , dN2−1

)
.

In the following sections, we always suppose that the matrix basis is chosen to satisfy that O0

and D are already in the above form. Since the closed system (2) is strongly controllable as
assumed above in this section, it suffices to study the representing case in which the control
Hamiltonians are Hi = 1

2�i, i = 1, . . . , N2 − 1, without much loss of generality. This is the
standard model that will be studied for decoherence suppression of open Markovian systems
in the next sections of this paper.

3. Optimal trajectory tracking

In principle, the decoherence is not able to be completely removed via coherent control in
Markovian open quantum system. This is because, as argued by Altafini [30], the irreversible
decohering dynamics is uncontrollable under coherent control. However, it is worth estimating
to what extent decoherence can be suppressed. For this purpose, we are going to explore this
problem by an optimal control technique to force the system to evolve along some prescribed
cohering trajectory. In this paper, we choose the typical target trajectory as the free evolution
m0(t) = eO0(t−t0)m0 of the free system:

ρ̇(t) = −i[H0, ρ(t)].

We then arrive at the minimization problem of the following functional:

J [u(t)] = 1

2

∫ tf

t0

[|m(t) − m0(t)|2 + ε−1uT (t)u(t)] dt, (5)

where m(t) is subjected to equation (3). The norm |m − m0| = [(m − m0)T (m − m0)]1/2

measures the deviation of quantum state m(t) from the target state m0(t). The term ε−1uT u

is added to prevent the control intensities from going too large, where the coefficient ε ∈ R is
used to achieve a balance between the tracking precision and the control constraints.

Traditionally, the above optimal control problem can be solved by the maximum principle
[39], by which the optimal solution can be solved by the following differential equation with
two-sided boundary values:

ṁ = O0m +
m∑

i=1

uiOim − Dm + g, m(t0) = m0, (6)

λ̇ = O0λ +
m∑

i=1

uiOiλ + Dλ − m + m0, λ(tf) = 0, (7)

ui = −ελT Oim, i = 1, . . . , n. (8)

In general, no analytic solution exists for this boundary value problem (BVP).
Nevertheless, one can always obtain a numerical solution. To illustrate this method and give
more analysis, we test several simple decoherence models that are widely used in quantum
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Figure 1. Temporal evolution of mx(t) for (a) amplitude damping, (b) phase damping and (c)
depolarizing decohering processes. The asterisk line denotes the target trajectory m0(t), the dashed
line is the uncontrolled trajectory; and the solid line is the optimally controlled trajectory.

computation theory:

(a) amplitude damping decoherence: L = σ−, � = 1;
(b) phase damping decoherence: L1 = 1

2 (I + σz), L2 = 1
2 (I − σz) and �1 = �2 = 1;

(c) depolarizing decoherence: L1 = σx, L2 = σy, L3 = σz and �1 = �2 = �3 = 1.

where σi are Pauli operators and σ− = σx − iσy . In addition, we assume that the system
possesses the Hamiltonian H = ωσz + uxσx + uyσy , where ω = 3 is the Rabi frequency. The
initial state is set to be a pure state m0 = (

√
3/2, 0,−1/2)T . The parameter ε is set to 1.

The simulation results are shown in figures 1 and 2. It is observed that the decohering
dynamics is partially suppressed in amplitude damping and phase damping decoherence
cases. For these two cases, the controlled trajectories oscillate synchronous with the target
trajectories, with more or less decreasing amplitudes due to the uncontrollability of open
Markovian systems. More interesting is that the resulting optimal controls also appear to
be approximately sinusoidal functions as shown in figure 2(a). This feature is manifested
in the power spectrum of the control intensities in figure 2(b) where a sharp peak emerges
at the system resonance frequency ω = 3. On the other hand, the exceptional case is the
depolarizing decoherence for which the optimal control does not work (no difference can be
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Figure 2. (a) The x-axis component of optimally designed control ux(t) and (b) the power spectrum
of ux(t): the solid line is for the amplitude damping, the dashed line is for the phase damping and
the asterisk line is for the depolarizing decohering processes.

observed between the controlled trajectory and the uncontrolled decohering trajectory in figure
1(c), so that they coincide). These features provide very useful hints and will be made into
rigorous demonstrations in the following sections.

4. Stationary control law

The most important fact we observe from the simulation results is that the optimal control
laws, as well as the controlled trajectories, are approximately sinusoidal functions of time.
Recall that this property has been demonstrated in [40] for closed two-level quantum systems;
we will show that open Markovian systems also have similar properties. To proceed with the
subsequent analysis, we need to introduce a new concept.

Definition 1. Consider the following nonlinear equations by substituting (8) into (6) and (7):


ṁ = −Dm + O0m +
n∑

i=1
ε(mT Oiλ)Oim + g,

λ̇ = O0λ + Dλ − m + m0 +
n∑

i=1
ε(mT Oiλ)Oiλ.

(9)

A function of time mss(t) starting from some initial value mss(t0) is called an exponential
stationary solution of (9), if it fulfils (9) and there exist positive constants M and β such that
the deviation from the real system trajectory is bounded as follows:

|m(t) − mss(t)| � M e−β(t−t0)|m(t0) − mss(t0)|.

The following theorem provides a sufficient condition for the existence of an exponential
stationary solution (see appendix B for the rigorous proof).

Theorem 1. There exists a positive number M such that |m(t)|, |λ(t)| < M . Denote
L = 1 + εnM2 and β = min{d1, . . . , dN2−1} being the minimum, where {di} are eigenvalues
of matrix D. If β > 4L, for any solutions m1(t), λ1(t) and m2(t), λ2(t) with boundary values
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m1(t0), λ
1(tf) and m2(t0), λ

2(tf), we have

|m1(t) − m2(t)| � β

β − 2L
e− β

2 (t−t0)|m1(t0) − m2(t0)|,

|m1(tf − t) − m2(tf − t)| � β

β − 2L
e− β

2 (tf−t)|m1(tf) − m2(tf)|.

Remark 1. The conditions in theorem 1 require that, to guarantee the convergence of the
controlled trajectory, the eigenvalues of D should be no less than a lower bound 4L. From the
definition of L, this in turn sets an upper bound for ε, i.e. ε < (nM2)−1(β/4 − 1). Obviously,
this restricts the tracking precision adjusted by ε in the cost functional (5). Hence, the condition
is rather stringent for the existence of a stationary solution. Nevertheless, we believe that this
condition can be relaxed and, as will be seen in the next section, the system can be transformed
to meet this condition via feedback controls.

Theorem 1 assures the convergence of the controlled trajectory, based on which it is
possible to obtain an explicit controlled stationary trajectory, i.e. the stationary solution of
(9). One notes that there exists a countable number of oscillation modes for stationary
solutions. Although each set of different boundary values gives a different stationary solution
and the collection of all stationary solutions may be uncountable, the stationary solution can be
expanded as a Fourier series with frequencies as a integral linear combination of frequencies
of m0(t) in (9) and m0(t) consists of a finite number of oscillation modes. For this reason, it
is seen that the oscillation modes of the stationary solution are countable. However, under the
(O) conditions introduced in section 2, we can seek stationary solutions in a simple form that
contains only oscillation modes that resonate with the target trajectory m0(t).

Theorem 2. Suppose the Markovian open quantum system (1) satisfies (O) conditions:
[O0,D] = 0 and O0g = 0. Under the assumptions in theorem 1, there exists a stationary
solution mss(t) = eO0(t−t0)ξ and λss(t) = eO0(t−t0)η of (9), where ξ, η ∈ RN2−1 satisfy

−Dξ + ε

N2−1∑
i=1

(ξT Oiη)Oiξ + g = 0, Dη − ξ + ε

N2−1∑
i=1

(ξT Oiη)Oiη + m0 = 0, (10)

and the resulting controls can be expressed as

uss
2k−1(t) = εξT O2k−1η cos ωk(t − t0) − εξT O2kη sin ωk(t − t0),

uss
2k(t) = εξT O2k−1η sin ωk(t − t0) + εξT O2kη cos ωk(t − t0),

uss
l (t) = εξT Olη, k = 1, . . . , r, l = 2r + 1, . . . , N2 − 1,

where ±iωk are non-zero eigenvalues of O0.

The proof can be found in appendix C. Obviously, the original optimization problem
is reduced to a much simpler algebraic equation that results in a sub-optimal control. The
theorem also conforms to our aforementioned observation, i.e. under proper assumptions and
boundary values, the controlled trajectory contains typical oscillating modes resonating with
the target trajectory, and the oscillating amplitudes do not decrease as time goes by. This
special trajectory can be taken as an approximated optimally controlled trajectory, since the
real system does not necessarily have the same boundary conditions.

Remark 2. As a trivial case, one can directly obtain the solution of the depolarizing
decoherence model in which g = 0. It is easy to see that ξ = 0 by solving (10). This
leads to the vanishing of the optimal controls, i.e. uss

i (t) = 0, i = 1, 2, . . . , N2 − 1. This
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Figure 3. The figure of the amplitude damping decoherence process. (a) Curves of mx(t): the
asterisk line denotes the optimally controlled trajectory in the example at the end of section 3, the
dashed line is the decohering trajectory without control, the solid line is the stationary trajectory and
the triangle line is the decohering trajectory with approximate control. (b) The x-axis component
of controls, ux(t): the dashed line denotes the numerical control law in the example at the end of
section 3 and the solid line is the stationary control law.

conforms to the simulation results in figures 1(c) and 2(a), i.e. no coherent control can resist
the depolarizing decohering effects. In the next section, we will present another method to
break through this limitation.

Next, we demonstrate the applicability of theorem 2 with the two-level decoherence
models discussed in section 3. It is easy to verify that these systems all satisfy (O)
conditions. Consider the same amplitude damping decoherence model in section 3. It
can be calculated that mss

x = 0.6150 cos ωt , mss
y = 0.6150 sin ωt,mss

z = −0.7468 and
uss

x = 0.4117 sin ωt, uss
y = −0.4117 cos ωt , where the coefficients are solved numerically from

equations (10). From the simulation results shown in figure 3, we see that the stationary solution
coincides with the optimally controlled trajectory. Moreover, we show the trajectory driven
by the approximated controls uss

x (t) and uss
y (t). As a sub-optimal solution, the approximated

controls perform pretty well that the resulting state trajectory (triangle line) is so close to the
optimally controlled trajectory (the asterisk line) that they coincide in figure 3. This simple
example verifies our conclusion.

5. Feedback control modified strategy for the optimal control

As mentioned in remarks 1 and 2, we need to separately deal with the two exceptional
cases: (1) the eigenvalues of D are very small and (2) the inhomogeneous term g disappears in
equation (3). In the first case, we are not able to make sure whether or not the coherent controls
still work since the sufficient condition in theorem 1 does not hold to guarantee the existence of
stationary solutions. In the second case, without the inhomogeneous term g, the remaining part
−Dm corresponding to the Lindblad terms will pull the coherent vector irreversibly towards
the origin of RN2−1, and this radial shrinking is not able to be compensated by coherent
control because the corresponding orthogonal matrices Oi ∈ so(N2 − 1) can produce only
angular motions that are perpendicular to that of D. To break through this obstacle, additional
non-unitary dynamics needs to be introduced into the open quantum control system to alter the
decohering dynamics and then make the coherent control more effective. This can be achieved
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by a feedback control strategy that involves quantum measurements. Suppose an observable
A is continuously measured and a unitary transformation U is imposed on the system once a
quantum jump is detected. In the limit of Markovian feedback, the master equation (1) can be
modified as [41]

ρ̇ = −i

[
H0 +

n∑
i=1

uiHi, ρ

]
+

∑
j

�jD[Lj ]ρ + �AD[UA]ρ, (11)

where the coefficient �A reflects the measurement and feedback strength and the feedback
efficiency. The back-action of quantum measurement and subsequent feedback action can be
read in the extra term �AD[UA]ρ = �A

(
UAρAU † − 1

2A2ρ − 1
2ρA2

)
, where the first term

represents the detected quantum jump after which a feedback transformation is performed
and the latter two terms represent the measured system dynamics without the occurrence
of a quantum jump, and hence no act will take place. Note that the Markovian assumption
describing the long-time behaviour, not for the small-time case, of the feedback control system
(11) does not contradict the strongly controllable assumption introduced in section 2, because
the strongly controllable assumption is not imposed on the open system (11), which relates to
the small-time behaviour of the open systems, but on the closed system (2).

Since the measurement and feedback operation can be chosen in advance, much more
freedoms are available in controlling the quantum system. Roughly speaking, one can choose
proper measured observable and feedback action so that a non-zero, inhomogeneous vector g

can be generated when we convert the matrix equation (11) into the corresponding coherent
vector equation. In this case, the system can be affected by coherent control. This is actually
equivalent to shifting and stabilizing the system to a new equilibrium state [42]. Moreover,
the eigenvalues of D corresponding to (11) can be assigned to be arbitrary prescribed values,
i.e. the convergence rate to the stationary can be adjusted by elaborate designs. Following
these ideas, we can firstly find the required N × N complex matrix L = UA that produces
such g and D terms. Next, we can apply the polar decomposition [1] of L, i.e. decomposition
of L into the product of a Hermitian matrix A and a unitary matrix U, by which the measured
observable A and feedback action U can be directly determined.

For example, we can choose L = σ− for two-level depolarizing decohering systems,
by which a non-zero inhomogeneous vector gL is produced. The corresponding polar
decomposition L = σx

[
1
2 (−I + σz)

]
gives the measurement observable A = 1

2 (−I + σz)

and feedback action U = σx . Under this design of feedback control, simulation results are
given in figure 4. In this demonstration example, the coherent dynamics can be partially
recovered. However, the improvement of decoherence suppression by feedback control is
still limited. Further numerical studies show that the maximal decoherence suppression via
the above feedback strategy is achieved at �A = 1.146. Even in this case, the effect is not
remarkably improved. Physically, there is a trade-off for the choice of the coefficient �A. The
larger �A is, the closer we can shift the system to a pure equilibrium state, but in the meantime,
the more severely the coherence is destroyed by induced non-unitary dynamics.

6. Discussion

In summary, we analyse the resonance phenomena appeared in the optimal control of
decohering dynamics. From these results, we find relatively simple approaches to designing
optimal controls that track prescribed trajectories for the Markovian systems. Although this
method is approximate, it can be taken as a starting point of decoherence control from which
the tracking error can be further corrected by other techniques such as perturbation theory and
learning algorithms. We also introduce the feedback control to circumvent some exceptional
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Figure 4. Feedback control of depolarizing decoherence: �1 = �2 = �3 = 1, �A = 1, t0 = 0,

tf = 20, ω = 3,m0 = (
√

3/2, 0,−1/2)T . (a) Curves of mx(t): the asterisk line denotes the target
trajectory m0(t); the dashed line is the numerical controlled trajectory in the example at the end of
section 3 and the solid line is the trajectory with feedback and optimally designed control imposed.
(b) The x-axis component of controls, ux(t): the dashed line denotes the numerical control law in
the example at the end of section 3 and the solid line is the optimal control law with feedback.

cases such as the depolarizing decoherence. It should be noted here that the quantum feedback
control alters the essential structure of the system so that the ability of coherent control can be
enhanced.

In this paper, we restrict the discussion to Markovian systems and show the validity of
our control strategy. In the future, it is worth extending the scope to more prevalent non-
Markovian systems. The modelling of non-Markovian systems has been widely studied in the
literature such as [37]. Comparing with the models we study in this paper, the matrix D and
the vector g become time-variant, and the algebraic equation for the stationary solution turns
into an integro-differential equation. However, by a dress-state approach this problem will
still be tractable and we believe that the resonance phenomena should show themselves in such
a system. Moreover, the system free Hamiltonian and control Hamitonians in equation (1)
are time independent. The generalization to systems with time-dependent Hamiltonians is an
interesting topic and very important in experimental studies [27], and the time dependence is
essential to induce multi-photon absorption process. Further considerations of time-dependent
quantum systems can be seen in [20, 43–45] including controllability studies. We will explore
these problems in our future works.
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Appendix A. Proof of the physical implication of (O) conditions

To prove the fact [H0, ρ∞] = 0, we first observe that the uncontrolled stationary distribution
ρ∞ satisfies

ρ̇∞ = −i[H0, ρ∞] +
m∑

j=1

�jD[Lj ]ρ∞ = 0,
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which is equivalent to (−D + O0)m∞ + g = 0 in the coherent vector representation. From
the (O) conditions [O0,D] = 0 and O0g = 0, it can be deduced that (−D + O0)O0m∞ = 0.
From equation (4), we can assume that

O0 =
(

O1
0

0

)
, D =

(
D1

D2

)
,

where

O1
0 = diag

((
0 −ω1

ω1 0

)
, . . . ,

(
0 −ωr

ωr 0

))
,

and D1 and D2 are, respectively, 2r × 2r and (N2 − 1 − 2r) × (N2 − 1 − 2r) non-negative
diagonal matrices. Assuming m∞ = ((

m1
∞

)T
,
(
m2

∞
)T )T

, where m1
∞ ∈ R2r and m2

∞ ∈
RN2−1−2r , we have

(−D1 + O1
0

)
O1

0m1
∞ = 0. Since the matrix −D1 + O1

0 is reversible, it
is known that O1

0m1
∞ = 0, i.e. O0m∞ = 0, which means [H0, ρ∞] = ∑

i (O0m∞)i · �i = 0.

Appendix B. Proof of theorem 1

We use the iterative algorithm to approximately solve (9), which results in the following
sequence of equations:

mk,(1)(t) = e−D(t−t0)mk(t0) +
∫ t

t0

e−D(t−t1)g dt1,

λk,(1)(t) = e−D(tf−t)λk(tf) +
∫ tf

t

e−D(t1−t)m0(t1) dt1,

mk,(m)(t) = e−D(t−t0)mk(t0) +
∫ t

t0

e−D(t−t1)g dt1 +
∫ t

t0

e−D(t−t1)

×
[
O0m

k,(m−1)(t1) +
n∑

i=1

ε((mk,(m−1))T Oiλ
k,(m−1))Oim

k,(m−1)

]
dt1,

λk,(m)(t) = e−D(tf−t)λk(tf) +
∫ tf

t

e−D(t1−t)m0(t1) dt1 +
∫ tf

t

e−D(t1−t)

×
[
O0λ

k,(m−1) − mk,(m−1) +
n∑

i=1

ε((mk,(m−1))T Oiλ
k,(m−1))Oiλ

k,(m−1)

]
dt1,

where k = 1, 2 and m = 1, 2, . . . ,∞. {mk,(m)(t)}, k = 1, 2, are Cauchy sequences and
mk,(m)(t) → mk(t), when m → ∞.

We first prove that there exists M > 0 such that |mk(t)|, |λk(t)| � M . For any initial-state
mk(t0), it is known that

ρk(t0) = 1

N
I +

∑
i

(mk(t0))i · �i ⇒ tr(ρk(t0))
2

= 1

N2
+ |mk(t0)|2 � 1 ⇒ |mk(t0)| � 1,

which means there exists M1 > 0 such that |mk,(1)(t)| � e− β

2 (t−t0)M1. For the same reason,
there exists M2 > 0 such that |λk,(1)(t)| � e− β

2 (tf−t)M2 for arbitrary final state λk(tf). Let
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M = 2 max{M1,M2}, L = 1 + εnM2. Note that for 2L
β

< 1
2 , it can be inductively proved that

|mk,(m)(t)| � e− β

2 (t−t0)

[
1 + · · · +

(
1

2

)m−1
]

M1 � M.

Let m → ∞, we have |mk(t)| � M and |λk(t)| � M .
Next, it can also be proved by induction that

|m1,(m)(t) − m2,(m)(t)| � (1 + · · · + µm−1) e− β

2 (t−t0)|m1(t0) − m2(t0)|,
where µ = 2L

β
< 1

2 . Since µ = 2L
β

< 1
2 , let m → ∞, it can be verified that

|m1(t) − m2(t)| � 1

1 − µ
e− β

2 (t−t0)|m1(t0) − m2(t0)|

= β

β − 2L
e− β

2 (t−t0)|m1(t0) − m2(t0)|.

The proof of the inequality |m1(tf − t) − m2(tf − t)| � β

β−2L
e− β

2 (tf−t)|m1(tf) − m2(tf)| is
similar from the fact

d

dt
mk(tf − t) = Dmk(tf − t) − O0m

k(tf − t)

−
l∑

i=1

ε(mk(tf − t)T Oiλ
k(tf − t)Oim

k(tf − t)) + g.

This is end of the proof.

Appendix C. Proof of theorem 2

Lemma C.1. If Hi is chosen as Hi = 1
2�i , i.e. Oi = 2Thi

= Tei
, i = 1, . . . , N2 − 1, we have

e−O0(t−t0)O2k−1 eO0(t−t0) = O2k−1 cos ω(t − t0) − O2k sin ω(t − t0),

e−O0(t−t0)O2k eO0(t−t0) = O2k−1 sin ω(t − t0) + O2k cos ω(t − t0),

where k = 1, . . . , r and ei is the ith natural basis vector of RN2−1.

Proof. For the special structure of O0 in equation (4), it is known that

[H0,H2k−1] = O0 e2k−1 · �� = ωk e2k · �� = ωkH2k,

[H0,H2k] = O0 e2k · �� = −ωk e2k−1 · �� = −ωkH2k−1,

where k = 1, . . . , r and ei is the ith natural basis vector of RN2−1. Hence, for any m ∈ RN2−1,
we have

([O0,O2k−1]m) · �� = [[H0,H2k−1],m · ��] = [ωkH2k,m · ��] = ωkO2km · ��,

i.e. [O0,O2k−1]m = ωkO2km, which means [O0,O2k−1] = ωkO2k . It is also easy to show
that [O0,O2k] = −ωkO2k−1. The lemma can then be proved by simple calculations from the
equality eAB e−A = ∑∞

i=0
1
i! [A

(i), B], where [A(i), B] = [A(i−1), [A,B]] and [A(0), B] = B.
�

Proof of theorem 2. It is sufficient to prove that, if ξ and η satisfy equation (10),
mss(t) = eO0(t−t0)ξ and λss(t) = eO0(t−t0)η will be the solution of (9). Substituting mss(t)
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and λss(t) into the first equation of (9), we have

ṁss(t) = −Dmss(t) + O0mss(t) +
N2−1∑
i=1

uss
i Oimss + g

⇐ O0 eO0(t−t0)ξ = −D eO0(t−t0)ξ + O0 eO0(t−t0)ξ +
N2−1∑
i=1

uss
i Oi eO0(t−t0)ξ + g

⇐ −D eO0(t−t0)ξ +
N2−1∑
i=1

uss
i Oi eO0(t−t0)ξ + g = 0.

Since equation (1) satisfies (O) conditions, i.e. [O0,D] = 0,O0g = 0, we have
[eO0(t−t0), D] = 0 and eO0(t−t0)g = g. Thus, the proof is reduced to showing that

eO0(t−t0)(−Dξ + g) +
N2−1∑
i=1

uss
i Oi eO0(t−t0)ξ = 0.

From lemma C.1 and equations [O0,Ol] = 0, l = 2r + 1, . . . , N2 − 1, it is known that

uss
2k−1(t) = εmT

ss(t)O2k−1λss(t) = εξT O2k−1η cos ωk(t − t0) − εξT O2kη sin ωk(t − t0),

uss
2k(t) = εmT

ss(t)O2kλss(t) = εξT O2k−1η sin ωk(t − t0) + εξT O2kη cos ωk(t − t0),

uss
l (t) = εmT

ss(t)Olλss(t) = εξT e−O0(t−t0)Ol eO0(t−t0)η = εξT Olη,

where k = 1, . . . , r and l = 2r + 1, . . . , N2 − 1. Thus, we have
N2−1∑
i=1

uss
i Oimss(t) = eO0(t−t0)

N2−1∑
i=1

ε(ξT Oiη)Oiξ.

In fact, it can be calculated from lemma 1 that

2r∑
i=1

uss
i Oimss(t) = (O1mss, . . . , O2rmss, 0)




u1

...

u2r

0




= eO0(t−t0)(e−O0(t−t0)O1 eO0(t−t0)ξ, . . . , e−O0(t−t0)O2r eO0(t−t0)ξ, 0)

× e−O0(t−t0)




ξT O1η

...

ξT O2rη

0




= eO0(t−t0)(O1ξ, . . . , O2r ξ, 0) eO0(t−t0) e−O0(t−t0)




ξT O1η

...

ξT O2rη

0




= eO0(t−t0)

2r∑
i=1

ε(ξT Oiη)Oiξ,

N2−1∑
l=2r+1

uss
l Olmss(t) =

N2−1∑
l=2r+1

ε(ξT Olη)Ol eO0(t−t0)ξ = eO0(t−t0)

N2−1∑
l=2r+1

ε(ξT Olη)Olξ.
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Therefore, mss(t) and λss(t) are stationary solutions of (9), if and only if


eO0(t−t0)

(
−Dξ + ε

N2−1∑
i=1

(ξT Oiη)Oiξ + g

)
= 0,

eO0(t−t0)

(
Dη − ξ + ε

N2−1∑
i=1

(ξT Oiη)Oiη + m0

)
= 0,

which is obvious from equations (10). This is the end of the proof. �
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